First Author: Allison Gartung
Beth Israel Deaconess Medical Center
Center for Vascular Biology Research 99 Brookline Avenue Boston, MA 02115
United States
Phone: agartung@caregroup.org

First Author is a: Postdoctoral Fellow
First Author is a member of: American Society for Investigative Pathology
First Author Degree: PhD, DSc, or equivalent

Presentation Preference: Oral

Sponsor: Dipak Panigrahy
Sponsor Phone: 6176678202
dpanigra@bidmc.harvard.edu

Sponsor's Society: Pathology - American Society for Investigative Pathology (ASIP) - Host Society

Keywords: 1. ovarian cancer 2. inflammation

Awards: ASIP Trainee Travel Award, HCS-Sponsored Trainee Travel Award

Suppression of Chemotherapy-induced Cytokine/Eicosanoid Storm and Ovarian Tumor Growth by a Dual COX-2/sEH Inhibitor

Allison Gartung¹, Jun Yang², Djanira Fernandes¹, Jaimie Chang¹, Sung Hee Hwang², Sui Huang³, Mark Kieran⁴, Bruce Hammock², Dipak Panigrahy¹, ¹Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, ²Department of Entomology and Nematology and Comprehensive Cancer Center, University of California Davis, Davis, CA, ³Institute for Systems Biology, Seattle, WA, ⁴Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA

While chemotherapy remains a mainstay in cancer treatment, growing evidence indicates that it may stimulate tumor growth. Other cancer therapies including radiation, immunotherapy, and stem cell transplantation may also trigger the release of pro-inflammatory and pro-tumorigenic cytokines in the tumor stroma. We recently demonstrated that although cancer therapy reduces tumor burden by killing tumor cells, the resulting dead cells, or 'debris', can promote tumor growth by stimulating the release of cytokines. Chemotherapy fails to generate remission in over 70% of patients with ovarian cancer, is rarely curative, and simultaneously creates tumor cell debris. Thus, cancer therapy is inherently a double-edged sword and targeting a single cytokine or pathway may not prevent therapy-induced cancer. Soluble epoxide hydrolase (sEH) inhibitors have been shown to stimulate the resolution of inflammation by promoting the synthesis of pro-resolving mediators and counter-regulating pro-inflammatory cytokines. In this study, tumor cell debris was prepared in vitro by treating either murine or human ovarian tumor cells with first-line platinum or taxane-based cytotoxic chemotherapies used for treating ovarian cancer (e.g. cisplatin, carboplatin, or paclitaxel). Chemotherapy-generated tumor cell debris stimulated ovarian tumor growth in both immunocompetent and immunocompromised hosts. Debris triggered macrophage production of a series of pro-inflammatory and pro-angiogenic cytokines. Further, LC-MS-MS-based oxylipin profiling of tumor cell debris generated by chemotherapy revealed a pathological release of tumor-promoting bioactive lipids ('eicosanoid storm') including cyclooxygenase (COX)-derived prostaglandins, lipoxigenase-derived HETEs, CYP450-derived DiHOMEs and EpOMEs. We hypothesize that dual COX-2/sEH inhibition may be a novel modality in suppressing ovarian tumor growth by stimulating the natural debris-clearing process. A dual COX-2/sEH inhibitor, PTUPB, suppressed debris-induced cytokines (e.g. TNFα, CCL2, CCL4, CXCL2, G-CSF, ICAM-1, MMP-9, and PAI-1) and eicosanoids (e.g. PGI2, PGD2, and PGJ2). PTUPB also delayed the onset of debris-stimulated tumor growth in an ovarian cancer (ID8) model, achieving sustained survival over 80 days post-injection. It is imperative to overcome the predicament between killing tumor cells and the inherent tumor-promoting activity of the debris. Thus, dual inhibition of COX-2/sEH may be a novel approach in cancer therapy to suppress the therapy-induced cytokine/eicosanoid storm and debris-stimulated tumor growth.

Support or Funding Information
National Cancer Institute grants R01 01CA170549-02; ROCA148633-01A4, NIEHS Superfund Research Program RO1