Chlorinated lipids mediate small airway epithelial dysfunction

Jane McHowat¹, Carolyn Albert², Celine Hartman², Daniel Pike², David Ford², ¹Saint Louis University, St Louis, MO, ²Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO

Neutrophil myeloperoxidase is a major mediator of microbicidal activity, catalyzing the conversion of hydrogen peroxide to hypochlorous acid (HOCl), a potent oxidant that reacts with both microbial and host molecular targets. HOCl targets the vinyl ether bond of plasmalogon lipids, resulting in the production of 2-chlorofatty aldehyde, which is in turn metabolized to 2-chlorofatty acid (2-CIFA). Recently, we have shown that free 2-CIFA levels are significantly associated with acute respiratory distress syndrome (ARDS) in sepsis patients. Lung endothelial cells treated with 2-CIFA showed increased permeability, surface expression of adhesion molecules, and neutrophil and platelet adherence. These data indicate that plasma 2-CIFA is a predictor for ARDS, likely through effects on the lung microvasculature. In this study, we determined the effect of 2-CIFA on human small airways epithelial cell (SAEC) function. Incubation of SAEC with 2-CIFA (100 nM-10 μM, up to 24 hours) resulted in a concentration- and time-dependent decrease in electrical resistance, with no change in resistance noted when SAEC were incubated with non-chlorinated fatty acid (FA). Our recently published studies published recently by us show that 2-CIFA (1 μM) treatment of lung microvascular endothelial cells resulted in a 2-fold increase in cell surface expression of intercellular adhesion molecule 1 (ICAM-1) and a 1.7-fold increase in vascular cell adhesion molecule 1 (VCAM-1) after a 4-hour incubation. We now show that incubation with 2-CIFA for 4 hours resulted in a 3.3-fold increase in cell surface expression of ICAM-1 and a 4.4-fold increase of VCAM-1 in SAEC. No increase in adhesion molecules was observed with FA incubation. 2-CIFA treatment resulted in neutrophil adherence to SAEC and enhanced transmigration across the SAEC monolayer after 2-CIFA treatment. Neutrophil transmigration across SAEC was 3-fold greater in a basolateral-to-apical direction when compared to apical-to-basolateral. Taken together, these data suggest that 2-CIFA mediates small airways epithelial dysfunction and neutrophil transmigration that may contribute to fluid accumulation and inflammation observed in ARDS patients.

Support or Funding Information
NIH R01 GM115553 (to D.A.F. and J.M.)