Ketones drive mitochondrial uncoupling in adipose tissue

Chase Walton¹, Benjamin T. Bikman². ¹Physiology and Developmental Biology, Brigham Young University, Provo, UT, ²Brigham Young University, Provo, UT

Objective. The purpose of this study was to determine the effects of the ketone b-hydroxybutyrate (bHB) on mitochondrial respiration and uncoupling in distinct adipose tissues.

Methods. We used cell, rodent, and human models. 3T3-L1 adipocytes were treated with bHB; in rodents and humans, following a period of ketosis, fat samples were excised and measured for similar mitochondrial outcomes. In each model, mitochondria respiration was analyzed and, where presently available, UCP1 levels were measured.

Results. In every model, bHB robustly increased mitochondrial respiration. In rodent tissue, UCP1 expression was higher in inguinal fat.

Conclusions. Ketones increase mitochondrial respiration in cells and mammalian adipose tissue, likely via upregulation of UCP1.