7123

Topic Category: 4210-ASIP Vascular cell biology & dysfunction in disease

First Author: Zachary Wilson

Brown University Pathobiology

Middle House 216-219 Providence, RI 02903

United States

Phone: 401-444-9605

Zachary S Wilson@brown.edu

First Author is a: Graduate Student

First Author is a member of: American Society for Investigative Pathology

First Author Degree: BA, BS, or equivalent

Presentation Preference: Oral

Sponsor: Craig Lefort

Sponsor Phone: 401-444-2353 Craig Lefort@brown.edu

Sponsor's Society: Pathology - American Society for Investigative Pathology (ASIP) - Host Society

Keywords: 1. Neutrophil 2. Vinculin 3. Integrin

Awards: ASIP Trainee Travel Award

## Vinculin in Neutrophil Adhesion, Motility and Trafficking

Zachary Wilson<sup>1,3</sup>, Michael Harman<sup>2,3</sup>, Lauren Hazlett<sup>2</sup>, Jamie Odzer<sup>3</sup>, Hadley Witt<sup>1,3</sup>, Christian Franck<sup>2</sup>, Jonathan Reichner<sup>1,3</sup>, Craig Lefort<sup>3,4</sup>.

<sup>1</sup>Pathobiology, <sup>2</sup>Engineering, Brown University, Providence, RI, <sup>3</sup>Surgery, Rhode Island Hospital, Providence, RI, <sup>4</sup>Brown University Alpert Medical School, Providence, RI

Neutrophils are innate immune effector cells that migrate from the blood to resolve bacterial and fungal infections. Understanding how neutrophils migrate is critical for regulating excessive inflammation and subsequent collateral injury.  $\beta 2$  integrins are essential to classical neutrophil recruitment from the blood, and the activation of  $\beta 2$  integrins has been well defined in previous studies. Adhesion stabilization of neutrophils on the endothelial surface as they crawl into a favorable position for transmigration is not as well defined. Neutrophils do not make mature focal adhesions, but do express the focal adhesion protein vinculin. Vinculin associates with integrins by binding to talin-1 and stabilizes integrin adhesions by recruiting various actin-associated proteins or by associating with actin directly. This study characterizes the role of vinculin in neutrophil  $\beta 2$  integrin-dependent adhesion, motility and anti-bacterial function. Intrinsic activation of  $\beta 2$  integrins is unaffected by vinculin knockout after CXCL1 activation. Vinculin knockout attenuates neutrophil adhesion, spreading, and motility on glass coated with  $\beta 2$  integrin ligand, ICAM-1, and activating CXCL1. Vinculin knockout also reduces neutrophil spreading in response to ICAM-1/CXCL1 on polyacrylamide gels of high stiffness but not lower stiffness. Vinculin knockout reduces traction stresses of neutrophils and the actin stiffening response after stimulation. Unlike static conditions, vinculin knockout does not affect neutrophil motility under flow conditions. Vinculin knockout attenuates respiratory burst, but does not affect phagocytosis. In mixed chimeric mice given intraperitoneal thioglycollate, we find comparable migration of vinculin-knockout and vinculin-sufficient neutrophils into the peritoneum. Altogether, while vinculin enhances neutrophil  $\beta 2$  integrin adhesion strength, vinculin knockout does not affect neutrophil motility and trafficking under physiological conditions.

## **Support or Funding Information**

American Heart Association (12SDG12080281), Scientist Development Grant CL Department of Surgery, Rhode Island Hospital